
AD-755  118 

LAGRANGEAN   RELAXATION AND  ITS   USES   IN 
INTEGER  PROGRAMMING 

Arthur   M.   Geoffrion 

California   University 

Prepared for: 

Office  of  Naval   Research 
National  Science   Foundation 

December  1972 

DISTRIBUTED BY: 

KJüi 
National Tichnical Information Sorvico 
U. S. DEPARTMENT OF COMMERCE 
5285 Port Royal Road, Springfield Va. 22151 



-   --«-T«*-. ^I 

Working Paper No. 195 

00 

r-t 

LAGRANGEAN RELAXATION AND ITS USES 

IN INTEGER PROGRAMMING 

by 

A.M. GEOFFRION 

I 

December 1972 

Ikk oo 
lor r-..' • 

liprodund by 

NATIONAL TECHNICAL 
INFORMATION SERVICE 

U S Daportmtnl of Commtrc« 
Springfitrd VA2II9I 

WESTERN MANAGEMENT SCIENCE INSTITUTE 

University of California, Los Angeles 
D D Cv ' 
f£8   8 1973 

B 
%i 



Security ClM»ific«tion 
DOCUMENT CONTROL DATA • R&D 

($»cutitY elmaalHcmtlan of Mil«, body ot abtlnel and mdtmmt annolmiion mual *• tnfnd mhit ttt» ommll npoti it cto«aif««A) 
I   ORIGINATING ACTIVl^V (Corporal» eulhor) 

western Management Science Institute 
University of California 

 T.r>a  Angela».   California 20024  

3«    HCPOAT ftCU"ITV    C L*«tiriC*TION 

ITnclaaaifiad 
16  »mourn 

i ntponr TITLE 

Lagrangean Relaxation and its Uses in Integer programming 

«   OKSCNIPTIVC NOT» (Typt of nport and incluiiv daiaa) 

Working Paper 
S  AUTHONfS; (Lmal rtama. Ural nama. initial) 

Arthur M. Geoffrion 

«   ftKPORT DATS 

December 1972 
7«    TcTALNO.  Of   PAttS 

21 
• a.   CONTMACT OR 6RANT NO. 

N00014-69-A-0200-4042 
*    »AOJCCT NO. 

NR 047-041 

IIV»; 

Working Paper No.  195 

»6  «THIN NBRORT NOTSJ (Any othar numhar* thai mar 6» aaal»iad 
mla rapartf 

10  A VAIL ABILITY/LIMITATION NOTICE* 
Western Management Science Institut« 

Available on request through:   university of California 
Los Angeles, California 90024 

it tut 12   SPONSORING MILITARY ACTIVITY 

IS   ABSTRACT 

Taking a subset of the constraints of a general mixed 
integer linear program up into the objective function in a 
Lagrangean fashion (with fixed multipliers) yields what v 
call a "Lagrangean relaxation" of the original program. 
This paper gives a reasonably comprehensive development of 
the use of this simple device in the context of branch- and- 
bound. The selective application of these ideas can y^ld 
significant improvements in performance for special classes 
of problems. 

DD < J*N M 1473 oiot-to?. SIOO T~(*J 
Security Classification 

i    - 



Security Clasiification 
i« 

KEY WORDS 
LINK A 

HOL I WT 

LINK ■ 
ROLt WT 

LINKC 
HOLC 

Integer programming 
duality theory 
discrete optimization 
lagrange multipliers 
branch-and-bound 

INSTRUCTIONS 
\.   ORIGINATING ACTIVITY:   Entw tht nam» and addrM* 
of the contractor, subcontractor, grant««, Dapartmant of D»- 
(«na« activity or other organltation fcoiporal« mithot) iaauing 
ih« report. 

2a.   REPORT SECURTY CLASSIFICATION:   Entar the evar- 
alt aacurity claaalfication of th« report.   Indicate whether 
"Restricted Data" ia included  Mathli« la to be in accord- 
ance with appropriate security regulatiena. 

2b.  GROUP:   Automatic downgrading la specified in DoO Di- 
rective S200.10 and Armed Forces Industrial Manual. Enter 
the group number.   Also, when applicable, ahow that option«! 
markings have been use«' for Group 3 and Group 4 as author- 
iced. 

3    REPORT TITLE:   Enter the complete report title in all 
cepital letters.   Titles in all cases should be unclassified. 
It a meaningful title cannot be selected without classifica- 
uon, show title classification in all capitals In parenthesia 
nnmedidiely following the title. 

I.   DESCRIPTIVE NOTES:   If appropriate, enter the type of 
report, e.g., interim, progress, summary, annual, or final. 
iSive the inclusive dates when a specific reporting period la 
■ overed. 

s.   AUTIIOR(S):   Enter the nama<s) of aulhoKa) aa ahown on 
nr in the report.   Entei laat name, first name, middle initial. 
If miliiary, show rank and branch of service.   The name of 
ihr prim ipdt author m an absolute minimum requirement. 

n.   REPORT DATE;   Enter the dale of the report as day, 
m mth. vtft. or month, year.   If more than one data appeara 
in the icpnrt, use dale of publication. 

7,.    TOTAL NUMBER OF .-»AGES:   The total page count 
sli.mld follow normal pagination procedures, i.a., enter th« 
numlier nf p«KPS containing informatioib 

7/.    NUMUKR OF REFERENCES:   Enter the total number of 
■••feit'iu't's riled in the report. 

fi.i    COMTKACT OR GRANT NUMBER:   If appropriate, enter 
ih<  appliratale number of the contract or grant under which 
the r«*p>.it was written. 

>>. * . & HJ.   PROJECT NUMBER:   Enter the appropriate 
i IüI, Uepartmeni identification, such ss project number, 

»uuproject number, system numbers, task number, etc. 

9a.   ORIGINATOR'S REPORT NUMBER(S):   Enter the offi- 
c iul report number by which (he document will be identified 
and controlled by the origir. .'ing activity.   Thia number muat 
be unique to this report. 

9b. OYhER REPORT NUMBER(S): If the report haa been 
.ssigned any other report numbers feilfier by »be originaler 
or by (be aponsor), also enter thia numoer(s). 

10.   AVAILABILITY/LIMITATION NOTICES!   Enter any Urn.   I 
nations on further diasemiitstion of the report, other than thoae 

ibipoaad by security claasificatlon, uaing ata^dard statements 
such aa: 

(1)    "Qualified requesters may obtain cople« of thia 
report from DDC " 

(2)'   "Foreign announcement and dissemination of this 
report by DDC is not authorised.M 

(3)    "U. 8. Government agenciea may obtain copies of 
this report directly from DOC,  Other qualified DDC 
users shall request through 

(4)    "U. S. military egenciea may obtain copies of this 
report directly from DDC   Other qualified user« 
shall request throug|i 

(5)    "All distribution of ibis report is controlled. Qual- 
ified DDC users shall request through 

If the report hss been furnished to the Office of Technics! 
Servieea, Department of Commerce, for aale to the public, indi- 
cate this feel and enter the price, If known. 

11. SUPPLEMENTARY NOTES: 
tory notes. 

12. SPONSORING MILITARY ACTIVITY: Enter the name of 
the departmental project office or laboratory sponsoring (par- 
ing tor) the research and development.   Include address. 

13    ABSTRACT:  Enter sn abatract givintt a brief and factual 
aiimmary of the document indicative of the report, even (hough 
it may also appear elsewhere in the body of the technical re- 
port.   If additional spsce ia required, a continuation sheet shall 
be etteched. 

Use for additional explena- 

It ia highly desirsble that the abatract of classified reports 
be unclaaaified.   Each paragraph of the abstract shall end with 
an indication of the military aacurity classification of the in- 
formation in the paragraph, repreaented as ITS). IS). fC). or (V) 

There is no limitation on the length of the abatract-   Ho»- 
ever, the auggeated length ia from 150 to 225 worda. 

14.   KEY WORDS:  Key words are technically meaningful terms 
or short phrases that characterire a report and may be used as 
indes entries for cataloging the report.   Key worda must be 
selected so that no aacurity classification ia required.   Identi- 
flera, auch aa equipment model designstion, trade name, military 
project code name, geographic location, may be used as key 
words but will be followed by an indication of technical con- 
teat.   The assignment of links, roles, and weights is optional 

r-f 
Security ClMsification 



Working paper No. 195 

Western Management Science institute 
University of California, Los Angeles 

"Lagrangean Relaxation and its Uses 

in Integer Programming" 

A.M. Geoffrion 

December 1972 

dkr- I. 

Presented at the IBM International Symposium on Discrete 
Optimization, Wildbad, Germany, October 30-November 1, 
1972. This research was supported by the Office of Naval 
Research under Contract Number N00014-69-A-0200-4042 and 
by the National Science Foundation under Grants GP-26294 
and GP-36090X. Reproduction in whole or in part is per- 
mitted for any purpose of the united States Government. 

J-C 



(i)-^. 

Abstract 

Taking a subset of the constraints of a general mixed Integer linear 

program up Into the objective function In a Lagrangean fashion (with fixed 

multipliers) yields what we call a "Lagrangean relaxation" of the original 

program. This paper gives a reasonably comprehensive development of the 

use of this simple device In the context of branch-and-bound. The selective 

application of these Ideas can yield significant Improvements in perfor- 

mance for special classes of problems. 
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1.  INTRODUCTION 

The general Integer linear programming problem can be 

written as 

(P) Minimize ex subject to Ax ^ b 

Xj integer, j e I , 

where b, c and d are vectors and A and B are matrices 

of conformable dimensions, and the set I consists of the 

subscripts of the variables required to be integer. The 

reason for distinguishing two groups of constraints is that 

the second of these, Bx ^ d , is supposed to have special 

structure. We define the Lagrangean relaxation of  (P) 

relative to Ax ^ b and a conformable nonnegative Lagrangean 

vector X to bet 

(PR:)     Minimize cx+x(b-Ax)  subject to Bx ^ d 
X= Xj integer, J € I 

The fruitful application of  (pRj;)  in specific cases requires 

judicious partitioning of the constraints into the two groups 

Ax ^ b and Px ^ d , and an appropriate choice of X ^ 0 . 

Three specific types of Bx ^ d constraints of considerable 

practical importance are introduced in Sec. 1.1 and carried 

throughout the paper. 

The purpose of this paper is to explore the usefulness 

of  (PR,)  as an adjunct to branch-and-bound or implicit 

enumeration methods for (P) . The development is intended 

for use at two levels. Pedagogically, it strives for a sim- 

plified and unified exposition of a number of old and new 

developments in integer programming. As a research effort 

it aims to develop what appears to be a potent general ap- 

proach to the design of improved algorithms for special 
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classes of integer programs. Although the algorithmic con- 

text of this paper is the branch-and-bound approach to 

integer linear programs, it should become obvious to the 

reader how these ideas can also be applied to other classes 

of algorithms and problems. For instance, a promising class 

of cutting-planes based on Lagrangean relaxation ideas is 

obtained as a part of our development. 

No claim is made for the originality of the notion of 

Lagrangean relaxation. To the contrary, it has been used 

recently by Held and Karp [16] [17] in their highly success- 

ful work on the traveling-salesman problem; by Fisher [ 5 ] 

in his promising algorithm for scheduling in the presence of 

resource constraints; by Fisher and Schräge [ 6 ] in their 

proposed algorithm for scheduling hospital admissions; and 

by Shapiro [18] and Fisher and Shapiro [ 7 ] in the context 

of a group theoretic approach to general integer programming. 

No doubt other authors have also made special application of 

Lagrangean relaxation ideas implicitly if not explicity in 

their work. We should also mention the general relevance of the 

literature on Lagrangean methods for non-convex optimization 

(e.g., Brooks and Geoffrion [2] and Greenberg and Robbins [14]). 

the  general plan of this paper is as follows, the 

basic results concerning the relation between (P) and 

(PR.) are collected in Sec. 2. Duality turns out to play 

a surprisingly major role. In Sec. 3 a generic LP-based 

enumerative approach for (P) is reviewed, and the four 

basic uses of Lagrangean relaxation in this context are de- 

scribed. The basic strategic options relating to the use of 

(PR ) are also detailed. Sec. 4 describes how cutting- 

planes can be generated based on (HO •  T*16 "filter" 

constraint of Balas [ 1 ], the "profit constraint" of Healy 

[ 15 ], and several new cuts are obtained as special cases. 

Sec. 5 derives the penalties of Driebeek [ 4 ] and Tomlin [19] 

from the viewpoint of Lagrangean relaxation, and new improved 

penalties are developed for important special cases. The 

use of penalties in strengthening the cuts of Sec. 4 and de- 

riving new ones is also explained. In Sec. 6 the concept of 
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surrogate constraints as developed by Glover [13] [14] and 

Geoffrion [ 8 ] is shown to be subsumed by the Lagrangean 

relaxation viewpoint. Some concluding comments are given 

in Sec. 7. 

Three particular but important cases for the special 

constraints Bx ^ d are carried throughout the paper. They 

serve to illustrate general ideas in a concrete way, and 

also to emphasize that Lagrangean relaxation is intended to 

be specialised to particular problem structures. These three 

cases are introduced in the following subsection. The final 

subsection of this Introduction summarizes the special nota- 

tions aid assumptions commonly used in the sequel. 

1.1 Three Examples 

Hie Lagrangean relaxation (PR.) must be vastly simpler 

to solve than  (P)  itself in order for it to yield any com- 

putational advantage. It should admit a closed form solution 

or be solvable by an efficient specialized 

algorithm. Thus the constraints Bx ^ d must possess con- 

siderable special structure. Three typical examples of such 

structure will now be given. These examples will be referred 

to repeatedly in the sequel. 

Example 1. The constraints Bx ^ d specify only upper bounds 

on some or all of the variables. For instance, in 0-1 

programming problems the integer variables possess upper 

bounds of unity.  It is easy to see that the optimal solution 

of  (PR.) can be written down by inspection of the signs of 

the collected coefficient vector of x , namely (c - XA) . 

Example 2. The constraints Bx ^ d are as in Example 1 but 

also include some generalized upper bounding constraints of 

the form 
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(1) Z X, - 1 , k - 1,2,..., K , 

where J-,••.,JL are disjoint subsets of I . Such constraints 

perform a "multiple choice" function. The optimal solution 

of (PRJ can again be written down by inspection, with a 

search for the smallest (c - \A) .    now being necessary over 

each subset J. . 

Example 3. The constraints Bx > d are as in Example 1 but 

also include some "switching" constraints of the form 

(2) 2  ^^ < ßj^ ,  k^l, ...,K , 

where the K subsets (k,Jk) are disjoint, x^,...^ are 

0-1 variables, the variables in J^ are centinuous«valued, 

and all ß coefficients are strictly positive. This type of 

constraint typically arises in capital expansion models, in 

the familiar capacitated plant location problem, for example, 

x.  is 1 or 0 according to whether or not a plant of capa- 

city 0..  is built at the kth site, x. for jcJ^ corres- 

ponds to the amounts shipped from plant site k to various 

destinations, and the ßj^'s are all unity. The Lagrangean 

relaxation (PR*)  can still be solved easily, since it sepa- 

rates into K independent problems of the form 

(3^) Minimize 2  (c-XA)jX. + (a-XA)kx|c 

subject to    ^    ßkjxj  < ßkkx]c 

k 

0 1 xj 1 uj'i€jk 

x^-O or 1  , 



where u. is the upper bound on variable x. .  If Xj*© , it 

follows from the positivity of ß.. that x.*0 must hold for 
Kj j 

all J€J. . If 3^*1 > (\)    becomes a trivial linear program 

sometimes referred to as a "continuous knapsack problem" with 

bounded variables; its solution is easily determined by com- 

parison of the ratios 

(c-\A) Ai 
The best of the solutions obtained under tho two cases x. "O 

and x. "1 yields the true optimal solution of  (3. ) . From 

these K solutions one may directly assemble the optimal solu- 

tion of (PRi) • 

These three examples serve to illustrate some of the 

commonly occuring types of special constraints Bx > d for 

which the associated Lagrangean relaxation can be optimized very 

efficiently, in most practical applications of integer pro- 

gramming there are several obvious and tractible choices for the 

constraints to be designated as B x > d .  In Held and Karp's 

excellent work on the traveling-salesman problem [16] [17], for 

example,  (pRi)  is a minimum spanning "1-tree" problem for 

which highly efficient algorithms are available. And in Fisher 

and Schräge's algorithm for hospital admissions scheduling [6], 

(PR^)  separates into a relatively simple scheduling problem 

for each patient. 

1.2 Notation and assumptions 

Notation and terminology is generally standard and consis- 

tent with that of Geof f rion and Marsten [ 11], a survey paper 

containing additional background material. However, the reader 

should memorize the following peculiar notationst if  (•)  is 



an optimization problem,  then   v(«)     is its optimal value, P(«) 
is its set of feasible solutions,  and    ("•')     refers to the same 
problem with all integrality conditions on the variables dropped. 
The vector    \    denotes the optimal multiplier vector (dual solu- 
tion)  associated with the constraints   Ax j> b    for the ordinary 
linear program    (P) . 

We adopt the convention that the optimal value of an in- 
feasible optimization problem is    + «     (resp.  - •)     if it is a 
minimizing   (resp.  maximizing)  problem.    The inner product of two 
vectors, be they row or column,  is denoted simply by their justa- 
position. 

Two benign assumptions are made throughout this paper in 
the interest of decluttering the exposition,  except where expli- 
citly stated to the contrary.    The first is that the non-special 
constraints   Ax ^ b    are all inequality constraints.    If some of 
these constraints were given as equalities,  then the correspond- 
ing components of \    would not be required to be nonnegative. 
This is the only change required to accomodate equality con- 
straints.    The second assumption is that the special constraints 
Bx ^ d   Include    upper bounds on all variables.    This obviates 

the need for special treatment of the case where    (?)    or one of 
its relaxations has optimal value equal to - • , 
and it also leads to some notational economies as explained in 
Sec. 3.2.    This assumption is consistent with the vast majority 
of potential applications.    It is a simple exercise to allow 
for its absence in the all of the results to follow,. 



2.     THEORY OF  LAGRANGEAN RELAXATION 

nie term relaxation is used in this paper in the following 
senset a minimizing problem    (Q)    is said to be a relaxation 
of a minimizing problem    (P)     if   F(Q)rP(P)     and the objective 
function of     (Q)    nowhere exceeds in value that of    (P)     on 
F(P)   .    Clearly    (PR,)     is & relaxation in this sense for all 

X ^ 0 ,   for the extra Lagrangean term    X(b - Ax)     in the 

objective function of     (piO    must be non-positive when 

Ax ^ b    is satisfied.    Notice  that the common practice of 
relaxation by simply throwing away some of the constraints is 
equivalent to Lagrangean relaxation with    X * 0 .    Permitting 
X ^ 0    allows  the relaxation to be tighter.    Notice also that 
if an optimal solution of    (piO     is feasible in     (P)     and 

satisfies    X (b - Ax)   = 0 ,    then it must be optimal in     (P)  . 

The potential usefulness of any relaxation of     (P)   , 
and of a Lagrangean relaxation in particular,   is  largely 
determined by how near its optimal value is  to that of     (F)   . 
This furnishes a criterion by which to measure the  "quality" 
of a particular choice for    x  •    The ideal choice would be 
to take    X    as an optimal solution of the concave program 

(D) Maximize      v (PR.)   , 

which we have designated by (D) because it coincides with 

the formal dual of  (P) with respect to the constraints 

Ax ^ b  (see, eg., [ 9]). This problem in turn is intimately 

linked to the following relaxation of  (P) : 

(P*)        Minimize ex subject to Ax ^ b 
X x cCotx^O: Bx ^ d and 

Xj integer, j e I) , 
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where    Co   denotes the convex hull of a set.    It may be diffi- 
cult to express the convex hull in    (P*)    as an explicit set 
of linear constraints, but in principle this is always possible 
and so    (P*)    may be regarded as a linear program.    An optimal 
multiplier vector corresponding to   Ax ^ b   will be denoted 
by    X*    when    (P*)    has finite optimal value. 

Theorem 1 collects the important relationships  between 
(PRX)   ,   (P)   ,   (P*)   ,   (P)     and     (D)   . 

Theorem 1. 

A. P(P)2P(P*)=P(P)   ,    P(PR.)3P(P) 

v(P)£v(P*)^v(P)   , v(PRx)iv(P)     for all    X^O    . 

B. If    (P)     is feasible,   then   v(P) ^ v(PRH     . 

C. If    (r ')     is feasible,   then 

v(DK Max    v(PRj  « v(PR-#) ■ v(P*)   . 
X^O x x 

D. Let    (P)    be feasible and    (PR.)    have  the 

following Intearalitv Propertv for all    X ^ 0  i 

its optimal value is not altered by dropping the 
integrality conditions on the variables,  i.e., 
v(PRx)  - v(PR^)    for all    X^O  .    Bien    (P*)    is 

feasible and 

v(P)  - v(PR-)  » v(D)  ■ v(PR #)  - v(P*)   . 



Proof.    Part   A    is trivial.    Let    (P)    be feasible. 
Then 

v(P)  > Max    v(PR,)    by the dual theorem 
*ä of linear programming^ 

■ v(PRl) by the definition of    \ 

^v(PR-) because    P (PR^)^ F (PR^)     . 

This proves Part B. An identical argument (the third portion 

is not needed) applied to  (P*)  yields the conclusion of 

Part C if one uses the following observation in the obvious 

way: 

v(PR ) -Min cx+x(b-Ax) subj. to x e Co^OtBx^d 
x x 

and x. integer, j € I) , 

which holds because the minimum value of a linear function 

over any compact set is not changed if the set is replaced 

by its convex hull. In view of Parts B and C, to prove 

Part D it is enough to show v(P) » v(P*) . 

+/ We have taken here the "partial" dual of (P) with 
respect to the constraints Ax £ b , rather than the "full" 
dual customarily used in linear programming. See Geoffrion 
[ 9] (especially Sec. 6.1) for an account of this generali- 
zation of the traditional duality theory. It is easily 
verified that x is a bona fide optimal solution of the 
partial dual even though it may be defined in terms of the 
full dual. 
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v (P)  = Max     v (PR.)        by duality 
A20 Ä 

10 

Max     v(PR-)        by the Integrality Property 
J£0 x 

Max Min cx+X(b-Ax)     svibj.  to    x € CoCx^Oi 
x 

Bx^d    and    x.    integer,  j € I) 

by the observation used in the 

proof of Part C 

v(P*) by duality . 

Notice that the feasibility of  (P*)  is a consequence of 

the fact that its dual has finite optimal value. 

QED 

A few comments on the significance and interpretation 
of Theorem 1   are in order.    Part A simply states the most 
obvious relations between    (P)    and its relaxations     (P)   , 
(P*)    and    (pRJ  •    Part B shows that   x ,    an    immediate 

byproduct of optimally solving the standard LP relaxation 
(P)   , yields a Lagrangean relaxation that is at least as 
good as    (P)    Itself.    Thus    X    is a reasonably good feasible 
solution of  (D).    Part O shows that    \    Is in fact the opti- 
mal choice when    (PR«)    has th* Integrality Property for all 
X ^ 0 .    in this case Lagrangean relaxation can do no   better 
than     (P)   .    Part C is of interest when the Integrality 
Property does not hold.    It shows that Lagrangean relaxation 
can do as well as    (P*)   , which in some cases may be a con- 
siderably tighter relaxation than    (P) —especially when the 

i 
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Ax ^ b    constraints are not very restrictive by comparison 
with    Bx ^ d .    In the extreme case that   Ax ^ b    Is vacuous, 
evidently   v(P*)  » v(P)   . 

The Integrality Property clearly holds for Example 1 
and 2 above   (one nay assume without loss of generality that 
the upper bounds on the Integer variables are Integers), but 
It does not hold for Example 3.    The presence or absence of 
the Integrality property is evident In many applications upon 
Inspection of    (PRJ    in light of the special structure of 
the constraints    Bx ^ d .    In other applications one may be 
able to appeal to the total unlmodularlty characterization 
of natural Integer solutions of linear programming problems 
(e.g., Velnott and Dantzig [21]). 
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3.     TliE  USE  OF LAGRANGEAN RELAXATION WITH 

AN LP-BASED ENUMERATIVE  ALGORITHM 

Lagrangean relaxation can be viewed as an auxiliary 

device useful In connection with an LP-based algorithm for 

(P) . It can be used with non-LP-based algorithms as well, 

but Its use Is particularly easy and natural when the primary 

algorithm for  (P) solves a sequence of linear programs. 

Since virtually all currently successful general Integer 

linear programming algorithms are enumeratlve as well as 

LP-based (see Sec. 3.1 of [ 11 ]), we choose to describe the 

applications of Lagrangean relaxation in this particular 

context. 

3.1 Generic LP-Based Enumeratlve Algorithm for (P) 

It is necessary at this point to very briefly describe 

a generic LP-based enumeratlve algorithm for  (P) . The version 

'I given here is not the most general possible, but it does compre- 

hend the current generation of successful implementations. The 

description is based on portions of [ 11 ], which can be con- 

sulted for further details. 

The unsnumerated portion of problem  (P)  is represented 

at any given time by a list of so-called candidate problems, 

each of which is simply (P) with certain additional con- 

straints appended. Each of these constraints stipulates 

that the value of one of the integer variables must lie in 

a certain closed interval (degenerate "point" intervals are 

allowed). When a candidate problem  (CP)  is examined and 

it is determined that it could not yield a feasible solution 

to (P) which is better than the best feasible solution 

previously found, then (CP)  is said to be fathomed. The 

best currently known feasible solution of (P) is called 

the incumbent. Its cost is designated by z . When a can- 

didate problem is examined but not fathomed, it is separated 

into two simpler candidate problems (sometimes called 
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subproblems)  by the addition of dichotomous  interval con- 
straints on one of the integer variables.    The variable 
selected for this purpose is called the separation variable. 
For instance,   if   xi   were the separation variable then one 
of the subproblems might receive the new constraint   x. « 0  , 
while the other would receive the new constraint    x, ^ 1  . 
(There are many other ways to separate a candidate problem, 
but this type of separation is by far the most common.) 

An outline of a generic LP-based enumeratave algorithm 
for     (P)     can now be given. 

Step 1. initialize the list of candidate problems 
to consist of     (P)     alone and set    z*    to an 
arbitrarily large number. 

Step 2. Stop if the  list of candidate problems  is 
empty:    if there  is an incumbent then it must 
be optimal,   otherwise     (P)    has no feasible 
solution. 

Step 3. Choose and extract one member of the candi- 
date problem list to become the current candi- 
date problem    (CP)   . 

Step 4. Define the current relaxed candidate problem 
(CPR)    to be     (CP)   [ (CP)  with the conditions 

"x.   integer,   j e  I"    dropped]. 

Step 5. Solve     (CPR)    by linear programming or some 
other suitable algorithm. 

Step 6. If    (CPR)    proves  to be infeasible,   go to 
Step 2. 
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Step 7. If the optimal value of     (CP )    proves  to 

be no less than    z*   ,    go to Step 2. 

D 
Step 8.    If an optimal solution x  of (CPR) 

happens to be optimal  in  (CP)  [i«e.f 

x c P(CP) and v(CPR) = ex ],  then record 

this solution as the new incumbent, put 
R 

z* « cx , and go to Step 2. 

Step 9. Decide whether or not to persist in attempt- 
ing to fathom     (CP)   .     If so,  go to Step 10; 
otherwise go to Step 11. 

Step 10. Replace     (CPR)    by another   (hopefully 
tighter)  relaxation of     (CP)   ,    and return to 
Step 5. 

Step 11. Select a separation variable    J0iJ0 el* 
whose optimal value    x.       in    (CP)    was not 

3o 
integral.    Separate     (CP)     into two subproblems 
via the dichotomous interval constraints 
"x.    ^ [x,  ]"    and    "x.    ^ [5.  ]   + 1"  , 

Jo Jo Jo Jo 
where    [x.  ]     stands  for the integer part of 

•'o 
x.     ,    and add the two subproblems to the 

Jo 
candidate list. 

By appropriate specializations of Steps 3,  9,  10 and 11, 
the above serves  to describe    MPSX-MIP,  OPHELIE MIXED,   the 
mixed integer option of   UMPIRE,  and integer programming codes 
developed by    Beale-Small, Dakin,  Davis,  Davis-Kendrick- 
Weitzman,   the author, Mitra,  and others.    See Sec.  3.1 of 
[11]  for references. 

I 
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3.2    Prfeliminary Remarks on the use of Iiagrangfan R»l«x«tlon 

The notion of relaxation played a central role in the 
generic algorithm just reviewed.    At Step 4 the integrality con- 
dition« on the current candidate problem are dropped, making it 
possible to compute an optimal solution of the relaxed candidate 
problem using the efficient methods of linear programming.    This 
results in fathoming  (at Step 6 or 7 or 8),  or in guidance con- 
cerning how to separate the candidate problem into easier sub- 
problems  (at Step 11) .    The whole point is to gain access to the 
powerful machinery of linear programming. 

Lagrangean relaxation is useful as a means of gaining 
access to other strong but still easily solved relaxations of 
the candidate problem.    These relaxations can take advantage of 
the LP solutions generated at Step 5 in a natural way, and can 
be designed to exploit many common ape cial structural features 
found in practical integer programming applications. 

There are four basic uses of Lagrangean relaxation within 
the context of the generic algorithm:    as a means of fathoming 
the current candidate problem,  of guiding its separation into 
more tractable subproblems, of restricting the range of some of 
the variables prior to separation  (without sacrificing the opti- 
mal solution)« ani of generating improved feasible solutions of 
(?).    Each of these uses will be discussed in turn.    An optional 
fifth use pertaining to the construction of cutting-planes  (cf. 
Step 10)   is treated separately in Sec. 4. 

Applications of Lagrangean relaxation within the context of 
the generic algorithm require it to be applied to the candidate 
problems rather cnan to    (?)  itself.   Our assumption that 

range restrictions on all variables are incorporated into 
the special constraints Bx ^ d implies« however«  that 
(?)    and    (CP)    will always have the same form.    Ihis 
obviates the need to introduce special notation for the 
additional restrictions associated with  (CP).    We may thus use 
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exactly the same notation for (PR*)  and  (CPR-), the 

Lagrangean relaxation of (CP) , and the results of Sec. 2 apply 

to (CP)  as well as to (P) . Separation constraints more com- 

plex than the simple interval constraints we have assumed at 

Step 11 would require a more scrupulous notation. 

The reader will notice in what follows that \    is typicc lly 

taken to be X—a byproduct of the linear programming solution 

to (CP) . This is a natural choice, but other possible strate- 

gies for selecting X  are discussed in Sec. 3.7. Taking \>*k 

also implies that Lagrangean relaxation is invoked after (CP) 

has been solved as a linear program, presumably as a result of 

exercising the option of Step 10.        Sees. 3.3-3.6 are 

written under this presumption for ease of exposition. But Sec. 

3.7 discusses the frequently attractive alternative of invoking 

Lagrangean relaxation before (CP)  i.s solved, using a previously 

computed X . 

3.3 Fathoming 

Suppose that  (CP)  could not be fathomed via the standard 

LP relaxation  (CP) . Then at Step 9 one could decide to persist 

in the attempt to fathom (CP) by setting up the Lagrangean re- 

laxation  (CPRr- )  at Step 10. Upon return to Step 5,  (CPRr- ) 

would be solved by some special method which exploits the struc- 

ture of the special constraints. Step 6 would check for fathoming 

by infeasibility: F(CPRr- ) =ff .    Step 7 would check for fathoming 

by value: v(CPBr- ) > z* . And Step 8 would check for fathoming 

by the detection of an optimal solution of (CP) : the optimal 
R 

solution of (CPRr- ), say x , would be optimal in (CP)  if it 

is feasible in  (CP)  and \   (b-AxR) • 0 . 

Theorem l.D sheds some light on the probable fathoming 

effectivenesa of (CPRr- ) when used as described as a supplement 

to the standard relaxation (CP) . it reveals that the tests for 

fathoming by infeasibility (Step 6) or by value (Step 7) cannot 

be effective when applied to (CPRr- )  if (CPR, ) has the 

.■..,- 
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integrality Property for all X^O (as is the case, it will be 

recalled, for Examples 1 and 2). This is because v(CPRr) must 

equal v(CP). Step 8, on the other hand, can succeed for (CPRr) 

even though it fails for (CP). 

3.4 Guiding separation 

Separation of (CP) is necessary when the attempts to 

fathom it have failed.  The Lagrangean relaxation (CPRr) can 

be useful at Step 11 in selecting a separation variable j0 

and in predicting which of the two resulting subproblems is 

more likely to contain the better feasible solution of (P). 

This involves computing the cunditional bounds 
6 _ 

V'j) = v(CPRr(xi < [X.,]) 
(4) D    A      X  D     J 

Vu(j) - V^PRj^X^ i (Xj] + 1) 

for all indices j in I-, defined to be the subset of I cor- 

responding to variables that are fractional in the LP solution 

x of (CP). The "(" notation indicates that the constraint 

following it (a simple range restriction on a single variable) 

is appended to (Ck»Rr). Clearly (CPRHXJ « CXJ")) IS a legiti- 

mate Lagrangean relaxation of (CP|XJ £ [XJ]), and similarly for 

(CPRr-|xj ^ CXJ] + 1). Thus the numbers VD(j), and V (j) 

respectively represent conditional lower bounds on the optimal 

values of the new "downward" and "upward" subproblems which 

would result if (CP) were separated on the j  variable. 

As an example of the us« of conditional bounds, the sep- 

aration variable could be chosen so as to maximize the larger 

of VD(j) and Vu(j) over all eligible j. Several successful 

integer programming codes have employed an analagous criterion 

applied to LP-based "penalties" — a concept which, as we 

shall see in Section 5, is intimately related to (4). Once 

a separation variable j is selected, the smaller of Vn(j ) 
o D o 

and V (jL) indicates which of the two resulting subproblems 

\ 
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appears  likely to contain the best feasible solution of   (P). 
This information is useful for deciding which of the two sub- 
problems should be selected from the candidate list first at 
a future execution of Step 3. 

The usefulness of   (CPRr-)  as a guide to separation depends 
primarily on how well V-Cj)  and V  (j)  correlate with the true 
optimal values of the corresponding candidate subproblems. 
For Examples 1 and 2,  unfortunately,   it turns out that 

(5) v(CP)   =VD(j)   =Vü(j)       for all j  € If 

if (4) is interpreted literally (more on this in Sectira 5). 

This fact and the general situation to be expected when the 

Integrality Property holds are the subject of Theorem 2. 

Theorem 2 

Let (CPR.) have the Integrality Property for all X ^ 0, 

and let-. (CP) have a finite optimal value. Then for 

all j f If 

(VD(j) 

(6) vfcF)  » V(CPR-)  s J with e^aiity holding in (6)        v(CPj  » v(CPR^ ^ J vuO)        at least one of the two 
V cases. 

In the special situation of Examples 1 and 2,  equality 

holds in (6) for both VpM) andVyCJ). 

Proof 

The  equality in (6) is a direct consequence of Theorem 

1.0. Hie second relation follows from the fact that the two 

conditions "Xj ^ CXJ]" and "Xj ^ [x*] + 1" are mutually exclu- 

sive and exhaustive (since x. is required to be integer-valued). 

The strengthened conclusion for Examples 1 and 2 follows 

from the fact that x and x must satisfy the optimality conditions 

for (CP) written so as to introduce a multiplier vector only 
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for the constraints Ax ^ b: 

(i) x minimizes ex + T (b-Ax)  subject to Bx > d 
x ^ 0 fc 

(ii) 1^0 

(iii)  X (b-Ax) « 0 

(iv)  Ax ^ b. 

We need only condition (i). Consider now the objective 
A 

coefficient  (c-XA) ? for j f i_.    For Example 1    this coef- 
ficient must be 0,   for otherwise the term  (c-XA) ?x * could 
be reduced by letting xt depart from xT in the opposite 
airection from the sign of   (C-IAK.    The same is true for 
Example 2  if j  is not a member of any Jk set; and if j  is a 
member of some J^,   then there must be a tie in the smallest 
objective function coefficient amongst the free variables 
in the same J.   subset as xT,for otherwise the term Zj (C-TA) .x. 
(sum over the free variables just specified)  could be reduced 

by increasing (decreasing)  x? if  (C-XA) ? is   (is not)   the 
uniquely smallest coefficient.    The conclusion regarding 
(C-XA) ? in Examples 1 and 2  imply that xl can be forced to 
either  [x. ] or  [x. ] + 1 without disturbing the optimal value 
of  (CPR-r).    The desired conclusion  (5)  now follows. Q.E.D. 

Thus    Lagrangean relaxation with X ■ X appears to be 
useless for guiding separation in Examples 1 and 2, since   (5) 
gives no discrimination whatever among possible separation 
variables or between the resulting subproblems.    The general 
case in which the Integrality Property holds is perhaps a little 
more promising/ but    at least one of the bounds VD(j)  and V  (j) 
is stuck at v(CP)  for each j  £ I.     [We remark in anticipation 
of Section 5 that the situation can be significantly improved 
if  (4)  is computed using an alternative representation of x. 
in terms of the non-basic variables in the optimal solution 

of  (CP)O 

>',.. .. 
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Lagrangean relaxation is much more promising at Step 11 

when the integrality Property does not hold. Then both VD(j) 

and V (j) may exceed v(CP) and may thereby provide useful 

discrimination among possible separation variables and the 

resulting candidate subproblems. Example 3 illustrates 

nicely how this can be, and is worth examining in some detail. 

Suppose for simplicity that all variables are in LL-i  {^^kj* 

Consider the initial candidate problem (CP) = (?) [an analysis 

similar to the one belov applies to any subsequent candidate 

problem].  The optimal value of (3jJ with X »X and with x. 

fixed Is denoted by vk(x, ).  It is known from the elementary 

theory of parametric linear programming that v^CXi.) is piece- 

wise-linear and convex as a function of x. . A graph of this 

function might look as in Figure 1.  In this picture v, (1) 

happens to be greater than zero, although it could also be 

w .^^r: - 
Figure 1 

Hypothetical Graph of the Function v^C») 

less than or equal to zero. Note that v. (0) necessarily 

equals zero, as is evident upon inspection of (3. ). The 

minimum of the function is shown as occurring at x..  This 

is true because (x,X) must satisfy the optimality conditions 
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for (P) stated as in the proof of Theorem 2. The separability 

of these conditions implies that x. and x., j € Ji.« ere opti- 

cal in (3^) with X ■ T and with the integrality requirement 
on x. dropped — and hence that 

yJXfr)  ■ Minimum ^(x^) 
0 ^ xk ^ i 

It also follows from the optimality conditions that 

K    _ 
(7) v(P) - Xb + 2^^ vk(xk). 

From the introductory discussion of Example 3 we have 

K 
(8) V(PRY) - Xb + Z^ v(3k) , 

Clearly 

v(3k) -Min {o, vk (1) } 2 vk (J^). 

We can now see plainly from (7) and (8) that v(p) <£ v(PRr) 

and that any difference is exactly equal to 

(9) £ml l^i0' V1*}-^] • 

This expression has a simple interpretation in terms of 

Figure 1. For obvious reasons there can be no contribution 

to this difference for the terms such that x. happens to be 

0 or X, but for k such that x^ Is fractional it is very likely 

that there will be a contribution. 
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Thus, we see why v(P) <V(PRT) is likely whenever there 

are fractional integer variables in the LP solution of (P) 

for Example 3. In this event both v (k) and v (k) obviously 

must exceed v(P). The magnitude of these conditional bounds 

are easily interpreted in terms of graphs like Figure 1.  For 

the particular case of Figure 1, 

vD (k) - v (PR^) 

VyCk) - v(PR^) + vk(l) . 

3.5 Range Restriction 

Sometimes during the attempted fathoming or separation 

of a candidate problem it is discovered that some of the 

range restrictions on the variables can be reduced without 

losing an optimal solution of (P). The range restrictions 

may then be tightened and the algorithm continues as before. 

With zero-one variables, this is sometimes known as making 

a "forced choice" of a variable. 

Lagrangean relaxation can assist in making such dis- 

coveries when the conditional bounds of (4) are computed. 

If V-O) ^ z happens to hold, then the lower range restriction 

on x. obviously can be tightened to x.. ^ CXJI + I« Similarly, 

± z    implies that the upper range restriction on x. can 

WH  Ä j 

be tightened to x. ^ fx. ]. it is even possible that both 
V
D(J) 1  s* tnd VyCj) ^ a* hold, in which case it is clear the 

current candidate problem is fathomed. 

Similar reasoning can be applied to j € I even if x* is integert 

v (CPRY(XJ ^ xj-l) ^ z* 
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implies that x. 2 x . can be imposed,  and 

vCCPR^-jXj ^ x^ + 1) ^ z* 

implies that x. <£ x. can be imposed. Note that either of 

these situations can occur even though v(CPRr) < z . 

All of the conclusions reached in the previous section 

regarding the magnitudes of the conditional bounds V (j) 

and V (j) are of direct interest with regard to range re- 

striction. 

3.6 Generating Improved Feasible Solutions 

Recall from Section 3.3 that (CPRr) leads to the fathom- 
R ing of (CP) at Step 8 if the optimal solution x of (CPRr-) is 

—     R R feasible in (CP) and satisfies x (b-Ax ) = 0. If x is feasible 
_        D 

in (CP) but x(b-Ax ) ^ 0, then it is worth checking whether 

cx < z .  If so, x should be recorded as a new incumbent 

and z should be updated even though (CP) is not fathomed. 
p 

Step 8 can be broadened still further if x is not 
R 

feasible in   (CP).    Adjusting x    in some ad hoc way so as to 
recover feasibility may well lead to an improved feasible 
solution of   (P).    This is exactly the same tactic as is 
commonly used with the ordinary LP relaxation  (CP), where the 
LP solution is rounded to satisfy integrality in the hope that 
it will  become feasible in   (P)   and have a value better than 
that of the incumbent. 

The effective design of feasible solution generators along 
these lined usually must be tailored to the specific problem 
structure at hand. 

3.7 Strategic Options for the Use of Lagrangean Relaxation 
The exposition of the preceding subsections presumes for 

the most part that Lagrangean relaxation is invoked only after 
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(CP) is solved, and that x is always taken to be the x cor- 

responding to (CP). This might be called the post-LP strat- 

egy with the natural choice for x.  It is important to recog- 

nize that there is also what might be called a pre-LP strategy, 

and that the candidate problem counterparts of (D) and (P ) 

may yield       better choices of x than (CP) when the 

Integrality Property does not hold for (CPR ). 

The idea of the pre-LP strategy is to invoke (CPR ) just 

before (CP) is to be solved. The hope is that (CP) can there- 

by be fathomed without having to resort to the more expensive 

linear program (CP). The natural choice for x is to i'ie a 

multiplier vector saved from a previous execution of Step 5 

at which the standard LP relaxation of a candidate problem 

was addressed. The X used should preferably be the one cor- 

responding to the prior candidate problem most closely related 

to the current one; or, if this proves cumbersome, simply 

the last one generated. Notice that it is particularly worth 

saving for this purpose the multiplier vector for a candidate 

problem which is fathomed by value via its LP relaxation 

[v(CPRr-) 2 z necessarily holds for this (CP) and its associated 

X].  The computational experience cited in Section 3.1.5 of 

[11]  (see also Geoffrion  [8]* shows that the pre-LP strategy 

can be quite effective even in the context of Example 1. 

Hie other point we wish to elaborate upon is that, for 

both the pre-LP and post-LP strategies, it is possible to use 

a x other than an optimal multiplier vector associated with 

the usual LP relaxation of a candidate problem. One may wish 

to do this, for instance, when (CP) appears to be excessively 

expensive to solve for a truly optimal solution but techniques 

are available for generating a reasonably good suboptimal 

multiplier vector. Fisher [51 has used this variant quite 

successfully in the context of scheduling in the presence of 
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resource constraints. Here  (CP) has such a large number of 

columns that it is impractical to even write down explicitly 
much less solve optimally. Nevertheless, he was able to work out 
a means of implementing what is essentially the dual Simplex 
Method for finding good dual solutions at reasonable computational 
cost. 

A second reason for using \    other than \    is evident from 
Theorem 1, which shows that better choices than T   may exist when 
(CPR,)  does not have the Integrality Property for all \ > 0 . 

One then looks to the candidate problem counterparts of  (D) or 
C (P )  for superior X's. If available, T   furnishes a good start- 

ing point to improve upon. One possibility is to apply an ascent 
technique to the counterpart of (D), which is a concave program, 
so as to obtain at least a near-optimal solution. This has been 

( done by Held and Karp [17] and by Fisher and Shapiro [7]. Another 
possibility is to apply a Dantzig-Wolfe decomposition technique to 
the counterpart of (P ), with the convex hull therein represented 
in terms of its extreme points (cf. Section 3 of Held and Karp 

I        [16] and Brooks and Geoff rion [2]). The column-generation problems 
would be precisely of the form (PR%) • The calculations would very 
likely be terminated before complete optimization, due to the 
characteristically slow asymptotic convergence of this technique. 

(        Other specialized techniques, both exact/heuristic, can be devised 
for (D) or (P )  in particular applications. We feel that this 
is likely to be a fruitful area of investigation when engineering 
a computer code for (P) . 
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4.     CUTS BASED ON LAGRAN6EAK  RELAXATION 

For present purposes a cut is any linear inequality 
defined relative  to a candidate problem which must be satis- 
fied by all of its feasible solutions.    Generally we seek 
cuts which, when appended to the standard LP relaxation    (CP) 
of a candidate problem,  cause  the optimal value of    (CP)     to 
increase as much as possible.    It is therefore desirable for 
a cut to have the property    that it is not satisfied by the 
available optimal solution to     (CP)   .    Cuts are one of the 
most important ways of carrying out Step 10 of the generic 
enumerative approach described earlier,   that is,  of tighten- 
ing an LP relaxation of an integer program.    We shall see 
that the notion of Lagrangean relaxation leads quite directly 
to a remarkably flexible family of cuts. 

To be specific we shall consider the initial candidate 
problem only,  namely    (P)     itself.    It is a simple matter to 
see how the  ideas developed below can be applied to any candi- 
date problem. 

4.1    Introduction to Lagrangean Cuts 

The fundamental idea for generating cuts based on    (PR.) 
for any specific    X ^ 0    is this.    Select a subset of the 
variables of    (P)   , say    (x.,...^- }  ,  for which it is 

1     nl 
possible to determine an explicit linear function 

/(x.,...,x^ )  satisfying 

(10) i (x^ ... ,xn ) - v (PRX )x1,... .Kh,) 

for all vectors     (x1...,xn )    which are part of a KM   feasible 

solution of    (PR )   .    Here    v(PR  jx1,...,x- )    is intended 

as a functional notation referring to the optimal value of 
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(PR ) with the additional restriction that the specified 

variables take on the specified values.  (If a particular 

vector (Xmt.,,,x    )    cannot be completed so as to yield a i    nj^ 

feasible solution of  (PR.) ,  then by convention 
A 

v(PR ]x. ,.,,,*    )  is defined to be + « at this point.) \    A     n. 

The cut deriving from (10) is 

(11) je(x,,...,x_ ) ^ ex . 
1     nl 

This is a legitimate cut because 

je(x1,...,xn )  = v(PRx|x1,...,xn ) ^ v(p|x1,...,xn ) ^ ex 

holds for all x feasible in  (P) . 

At least two choices for {x,,...,x ) are always per- 
i     nl 

missible regardless of the particular structure of 

(PR )  :  the empty set and the full set. For the empty set 

the function / is just the constant v(PR ) . Thus (11) 
A 

becomes simply 

(12) v(PRx) ^ ex 

Note that   (12)  cannot be violated by   x ,  an optimal solution 
of  (P)   ,  when     ip\)    has the Integrality Property for all 

X 2; 0    .     in that case    v(PR ) ^ v(p)  - ex    must hold by 

Theorem 1.0, and so appending  (12)  to    (P)    cannot increase 
its optimal value.     Theorem l.D also reveals that    x    is the 
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best choice of X in this case, since (12) must then hold 

with exact equality at x . in the absence of the integral- 

ity property, (12) will be violated at x if v(P)<v(P*) 

and x is sufficiently near optimal in (D). 

Now consider the choice where (x.....^. } consists 

of all of the variables. Then 

v (PR |x) » ex + X (b - Ax) 

for all x feasible in  (PR%)  and (11) becomes 

(13)       ex + X (b-Ax) ^ ex or X (b-Ax) ^ 0  . 

This cut obviously cannot be violated by x or by any other 

feasible solution of  (P) , since then b - Ax £ 0 . Thus 

(13) is ineffective as a means of tightening the relaxation 

(P) . We remark in passing that (13) with X equal to X 

is precisely the "filter" constraint proposed by Balas [ I ] 

in the context of Example 1 (as noted in the proof of 

nieorera 2,  X(b-Ax) » 0 ). 

The  particular variables which play the role of 

(x1,...,xn ) will be called the cut variables, and of course 
1 nl ~   ■— "~ 

they need not be the first n^    consecutive components of 

x . Other choices besides the empty set and the full set 

are usually permissible in that they meet the requirement of 

(10) that v(PR. Ixp ...jXn ) must be linear over the set of 

vectors  (x««*..«je_ ) which are part of a feasible solution 
A    nj^ 

of (PR«) • Among the permissible choices, one seeks to 

maximise the depth of the resulting cut in some sense. Since 

we have in mind using (11) at Step 10 of the generic 
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enumerative algorithm, one appealing criterion for measuring 

"depth" is the amount of violation of (11) evaluated at x : 

(14) /(x,,...,^ ) - ex . 
i    nl 

If there are several permissible choices of cut variables 

which maximize the cut depth then it seems reasonable to 

turn to a secondary criterion of having as many cut variables 

as possible since this tends to strengthen the cut when evalu- 

ated at any feasible solution of  (PRX)  •  This is evident 

from the obvious inequality 

v(PRx|x1,...,xn ) ^ v(PRx|x1, ...,xn ,xn +1)  . 

The  other principal question arising in applications 

is the choice of \  . The  cut depth criterion (14) serves 

as well to discriminate among alternative choices of \    as 

it does among alternative choices of cut variables. The 

most conspicuous choice is certainly \  ,  though one must 

allow that another choice may prove superior — especially 

when the Integrality Property does not hold. 

Let us consider now our three examples with the choice 

X ■ X . 

4.2 Cuts for Example 1 

For example 1 it turns out that any subset of cut vari- 

ables is permissible. This is due to the fact that (P^r) 

separates into as many independent univariate subproblems 

as there are components in x . Evidently 

ni 
(15) v(PR-lx1, ...,xn ) » v(PR^Ixj—• •-xn «O+Z 

J'(c-XA)ix. 
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for every (x.,..,,x    )    which is part of a feasible solution 
1     nl 

to  (PR-) .  Thus (11) becomes 
A 

ni  - 
(16)       v(PR-|x,«-...^c «0)+ Z  (c-XA)4X. ^ ex . 

The depth of this cut at x is zero because 

ni  -  - 
v(PR7|x1=...=xr, =0)+ 2  (c-XA)aX. ■ v(PR7) ■ ex 

by Theorem I.D.  Since all cuts have the saune depth by cri- 

terion (14), the proper choice is to take (x„...,xn } to 

be the full set. Then (16) coincides with (13) with X»r . 

4.3 Cuts for Example 2 

For Example 2 it also turns out that any choice of cut 

variables is permissible, and that all of the resulting cuts 

have exactly zero depth at x . We omit the straightforward 

but somewhat tedious verification of this result.  Thus (13) 

with \mT   is again the best cut. 

4.4 Cuts for Bxample 3 

The situation for Example 3 is a little more complex. Re- 

call that (PRj-)  separates into K independent subproblems of 

the form (3. )  and into as many additional unlvariate subproblems 

as there are variables which do not appear in any of the subpro- 

blems of type (3.) . Denote the subscripts of these last vari- 

ables by T. Then 

v(PRr) - Xb + 2 v(3v) 
x       k-1  K 

+ 2 
jeT 

Min (c-XA)^ subj. to Q^x^u^ 

and x. integer if jel 
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Consider selecting for the cut variables any subset of the 
0-1    switching variables, say   x^...fXg     where    1 ^ 1^ ^ K 

plus any subset   S    of    T    . 

Evidently 

(17) vCPR-jXjy...,xK ;xa for j € S)  ■ 

vCPR-^-O for l^k^Kj^ and x.»0 for jeS) 

Kl + 2 SOvIx,.) + 2 (c-XA).x. 
k-1 ^ ^   jcS     J D 

holds whenever xk is 0 or 1 for l^k^Kj^ and p^x^u^ 

for j e S and also x. is integer for j € IflS . The 

binary nature of x^ makes it possible to write down a 

linear function of x^ which coincides with vOjJx^) at 

Xjc » 0 and 1: 

(18) v(3klxk) - v(3k|0)(l-xk) +v(3kIl)xk . 

Together (17) and (18) yield (uniquely) the linear function 
required by (10), and (11) becomes 

(19) v(PI^|x^-0«]£c^V and x.- 0 for J€S) 

Kl   i + Z v(3Jl)x.  + Z (c-XA) .x. £ ex , 
k»l   K   K   jeS     3 J 

where we have used the fact that v(3k|0) • 0 . It is clear 

from the discussion following Fig. 1 in Sec. 3.4 that this 

tr*- • / 
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cut is quite likely to be violated at    x  : 

(20) left-hand side of  (19) evaluated at    x 

Kl 
»    v(PR^|xk-0,l^k^K1)   +2      v(3k|l)xk 

Kl 
>   v(PRrlxk"0,l^k^C1)   + Z      V^K^ 

-    v(PRr)   2 V(P)   " C*     • 

The amount of violation (i.e., the depth of cut) is thus at 

least equal to v(PRj) - v(P) , which is given by (9). 

Figure 1 shows clearly that additional violation will accrue 

for each ä^d^k^Kj^) which is fractional, in the amount by 

which v(3k|l)xk exceeds v(3k)  . It follows .that it is 

best to take K, » K , since this includes as many fractional 

x. 's as possible. 

This analysis of Example 3 may be summarized by saying 
that a Lagrangean cut can be obtained for any subset of cut 
variables which does not include any of the variables in 

ujc      j    , and that the deepest cuts ar« obtained when the 

cut variables include all    k(l^k^K)    such that   x^    is 

fractional.    Attempts to include some of the variables in 

iK     Jv    as cut variables will not always be successful since 

they tend to destroy the essential linearity property asso- 
ciated with (10). In general, then, the appropriate choice 
for the cut variables is {1, ...,K)uT . The corresponding 

cut is 
K 

(21)       2      v(3vIl)xv  +2   (c-\A).x. ^cx    . 
k-1        K       ^    jcT ^ :, 
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4.5 Further remarks 

The discussion of Examples 1-3 made extensive use of the 

fact that (PR*) could be separated into a number of indepen- 

dent subproblems. Such separability is sufficiently common in 

potential applications of Lagrangean relaxation to warrant the 

following observation.  Suppose that the component indices of 

x can be partitioned into K mutually exclusive and exhaus- 

tive subsets J1,...,JK    (K=l is allowed) such that  (PR^) 

separates into K corresponding independent subproblems 
v 

(PRT), foci, •••*X [this requires, of course, that none of the 

constraints Bx > d link any of the subsets of variables] . 

Then K 

vCPl^) » Xb +k|1 V(PRJ) . 

Let    j.     be any particular element from   J.     and it follows 
that 

K 
VCPRJX^   ,...,X^   )   - \b 4^Z1 v(PRj|x.  )   . 

l K k 

If x. ,...,x.  are selected so that they are all 0-1 vari- 

ables then they constitute a permissible set of cut variables, 

This is because [cf. (18)] the linear function 

v(P^|xj -OMl-Xj ) + V(PRJ|XJ -DXJ 
'k -»k   Jk 

, )  for x. ■ 
'k       Jk 

ki coincides with vfPRjJx. )  for x. ■ 0 and 1 , and conse- 

quently (11) becomes 

(22)  Xb +|c|1 [^(PRf |xj -0) (1-Xj )+ v(PRf Ixj -l)xj ]£ ex . 



34 

This cut has the property that it is always at least as deep at x 

as (12), the cut based on the empty set of cut variables; that 

is, the left-hand side of (22) evaluated at x is at least as 

large as v(PR^) . This fact rests on the simple observation 

v(PRj|x -0)(1-X. )+ v(PR*|x mi)x      £ 
•^k     Jk       ■'k   ^k 

Min  (vfppjlxj «0),v(PRjlxj -1)] . V(PRJ) . 
IS* I* 

It is perhaps unnecessary to remark that x.  need not be a 
3k 

0-1    variable when    J.     is a singleton in order for it to be a 
permissible choice for a cut variable,   for then 

V(PR!C|X.  )»(c-X.A). x.       itself is linear. 
^    3k Dk 3k 

Two further remarks are in order.    First,   choices of cut 
variables    [x.,,...,x    } which do not satisfy the linearity pro- i n1 

perty of  (10)  can sometimes be accomodated by allowing    <    in- 
stead of equality in   (10) .    It is immediate that   (11)   remains 
a legitimate cut.    Second,   (11)  can sometimes be improved by 
replacing   v(PR. )x.,...»x    )     for some vectors     (x.,...,x    ) 

by a better lower bound on    v(p|x1,...,x    ).   These two remarks i n1 

are exploited in Sec.   5.5 below. 

Sec. 5.5 also shows how one may overcome the apparently 
unsatisfactory situation for Examples 1 and 2 in «hiidh there 
seems to be no way to construct a cut of positive depth at    x  . 



35 

5. RBLÄKOKS TO TEE PENALTY CONCEPT 

The so-called "penalty" concept in integer programming was 

propelled to prominence by Oriebeek [4 ], although the essen- 

tial notion was used earlier by Healy [15] and Dakin [ 3 ] . The 

original idea was to underestimate the amount by which the 

optimal value of the LP relaxation of the current candidate 

problem would increase if separation were carried out using a 

particular separation variable. The estimates of change, re- 

ferred to as penalties, can be used to help guide separation 

and may also permit fathoming or range restriction. An impor- 

tant subsequent refinement of this original idea was the recogni- 

tion that computing penalties based on LP relaxations does not 

come to grips with the fact that it is the candidate problems 

and sübproblems th imselves, and not their LP relaxations, which 

art central to the underlying enumerative process. Tomlin [19] 

[20] showed how to modify the penalty formulae so as to take at 

least partial account of the integrality conditions. The re- 

sulting penalties are underestimates of the difference between 

v(CP)  and the optimal value of a candidate subproblem derived 

from (CP) . Perhaps needless to say, in general it is not possi- 

ble to take complete account of all integrality conditions in com- 

puting these strengthened penalties, for that would require just 

about as much work as solving (CP) itself . See  [11]  for a 

discussion of current practice in the computation and use of 

penalties. 

Lagrangean relaxation furnishes a convenient setting for de- 

riving the simple and strengthened penalties alluded to above. 

This is done in Sec. 5.1. More importantly, it leads naturally 

to extensions, specializations, and additional uses for penal- 

ties which do not follow as easily from the more traditional 

viewpoint. This is illustrated in Sees. 5.2-5.5, the last of which 

is devoted to the promising topic of using penalties to strengthen 

the Lagrangean cuts of Sec. 4. 
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5.1 Basic Results: Bx > d Vacuous 

The first task is to sho.-r how the formulae for simple and 

strengthened penalties are related to Lagrangean relaxation. 

This requires specializing Bx ^ d to be vacuous (in contrast 

to our usual convention, in this subsection Bx > d will not 

even include upper bounds on the variables) . It follows, as in 

Theorem 2,  that the objective function coefficient of  (CPR^-) 

vanishes for all j  such that x. is fractional, and hence 

that for all j€lf we have 

VD(j) A vCCPRjjrlXj < [Xj])- v(CP) 

VJ) A vCcPP^Xj ^ [Xj] +1)- v(CP). 

Thus the Lagrangean relaxation  (CPRr)  appears to yield zero 

"down" and "up" penalties for separation on x. . 

A simple remedy is to employ an alternative representation 

for x.  in terms of variables whose objective function co- 

efficients in (CPRr-)  do not vanish. Such a representation is 

available from the final tableau of the linear program (CP) 

since x. must be basic therein. To facilitate comparison with 

prior work on penalties, assume for the remainder of this sub- 

section that the constraints Ax ^ b are actually equalities 

rather than inequalities (add slack variables if necessary). 

Then x. has a representation in terms of the variables which 

are non-basic  (ieN)  in the final LP tableau of the form 

■'   ■' i€N  D1 1 

The use of this representation in the definition of V-fj)  and 

Vu(j)  leads to the following strengthened conditional bounds: 
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for j€lf , 

v*(j) A v(cpRr|xj- z *^ixi   < [x.J) 

(23) 

V*(j) ^ v^PRr-lx.- 2 ä..x.  > [x.1+1). 
U ^  ^ ieN :31 1     3 

Clearly 

V*(j) < vCCPlXj < [Xj]) 

V^(j) < viCPlXj ^ [Xjl+1) 

for all jelf i that is, these conditional bounds really do 

underestimate the optimal value of the candidate problems that 

would result if (CP) were separated using x. as the separa- 

tion variable. 

unfortunately the computation of V*(j)  and Vft(j)  may 

be onerous if ä..^ 0 for some variables icNOi . The computa- 

tion then requires solving a knapsack-type problem with some in- 

teger variables. Hence it is natural to think of estimating 

V*(j)  and V*(j)  from below by simply dropping all integrality 

conditions: 

vj0(j) A v(CP^r|xj- 2 ä^x. < [XjD 

(24) 

V^tj)   A v(CP%|xj-i2N a^x, 2 [Xjl+D . 

The computation of each of these conditional bounds merely re- 
quires minimizing a linear function with all non-negative coeffi- 
cients  [ (c-XX) j> 0    by duality]   subject to a single linear con- 
straint and   x > 0   .    This is sometimes referred to as a 
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"continuous knapsack" type problem and it is easy to write down 
an explicit solution: 

V*0 (j) - v (CP) + (x. - [X ]) MinittU» ( (c-rA) . 
J   J   icN«   )   — - 

(25) 

V*T
0(j) = v(CP)+([x.]+l-x.) Minimum fCc-XX). 
u J    J ieN:   I  

(we have used the fact that Xtwv (CP) by LP duality) . These 
conditional bounds are identical to those associated with the 
simplest penalties mentioned earlier (cf. (5). in (4 ]) . 

The strengthened penalties of Tomlin can also be recovered 
from this viewpoint by retaining the condition that x. must 
not be in the open interval (0,1) for jeNfli. Then we obtain 

(261 

V« (j)-v(CPRr|x.- 2 a..x. < [x.J and x./(0,l) for all i€Nni) 
D        A 3 ieN 3X 1 ~  D      1 

V*1(j)Äv(CPRr|x.- 2 a..x. 2 [xj+l and x./(0,l) for all ieNfli) . 
u J i€N 3       ■' 

It is not difficult to see that at most one variable need be at 
a positive level in an optimal solution of the modified continuous 
knapsack problems defined in (26) . This observation leads to the 
explicit formulae: 

V*1(j)-v(CP)^Min   /(c-rA)i(xj-[xjl)/äji if i/l 

a >0 j(c-rA)iMax Ax.-fx.])  ^ if icl 

(27) ^  *ji 

*1 /      _        - 
Vu (j)-v(cp)4Min  Mc-rA)i([xjl+l-xj)/(-aji) if i/I 

*ji<0 / (c'^A)iMax \^jl+1"*j  1 if i€l 

<-*ji) 



I! 

39 

These formula« are identical with the strengthened penalties of 

Tomlin (of. (10) and (11) of [19] or (3.5) and (3.6) of [20]). 

It is evident from the very definitions (23), (24) and (26) that 

v*0(j) <vllW  ^vj(j) 
(28) for all j€lf . 

v*0(j) ^vj^j) < V*(j) 

This completes the recovery of known formulae for Driebeek 

and Tomlin penalties for jeZ. . 

Exactly the same type of*analysis holds for penalties associated 

with basic variables in I-I£. Such penalties are of interest 

as a means of obtaining tighter ranges on integer variables which 

happen to be naturally integer in the optimal solution of (CP) . 

For a nonbasic variable x.  in I "If the quantity of interest 

is v(CPRjr|x. > 1); no alternative representation in terms of 

nonbasic variables is possible. Evidently 

(29) v(CPRr|xj ^ l)-v(CP)+(c-rA) . . 

Again this is a standard result. 

Another technique for strengthening (24) makes use of the 

following elementary result. 

Theorem 3. 

Let  (I?) be a minimizing integer linear program in which 

exactly one variable, say x. , is declared to be in- 

teger-valued. Suppose that x. , the optimal level 

of xh when (IP) is solved ignoring the inter,ality 

requirement, is fractional. Then the optimal value 

of (IP) is given by 

v(IP)-Min Mlplxj-f^D^lplXk-^+l)). 
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Proof. We have assumed (without loss of generality)that (IP) is a mini- 

mizing problem. Then it is well-known that VUPIX.)  is a con- 

vex function of x.  with minimal value at x.   . The desired 

conclusion follows easily. The possibility that (ip|x. «[x.]) 

or  (Tp | x. »[x.]+1) or both are infeasible is not excluded 

(recall that our convention is to define a minimum over an empty 

8et a8  +-,• Q.E.D. 

Let iD(j) be the minimizing non-basic i in the formula 

for V*0(j)  given in (2S) . The index i-jfj)  is defined simi- 

larly. Then application of Theorem 3 in the obvious way permits 

the following improvement on (24) to be computed with only a 

little extra effort: 

V*2(j)-v(C^r|xj- 2 ij^ < fcjl and x. (j) integer) 

(30) 

vJ2(j)=v(CP^-|xj- 2 äj^ 2 [x^J+i and xi (j) integer). 

Neither (30) nor (26) necessarily dominates the other. It is 

not difficult to see that the following relationship then holds 

for jelfi 

(x4- 

(31) 

;r^1,/I
JiD(Wyi-vD1^QvD2^ 

ctx^i^)/«-^,) jH i • v*1«) r ^(j). 

We are unable to supply a reference to the conditional bounds 
(30)   in the published literature. 

" 
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So far we have required Bx ^ d to be vacuous, that is, 

all upper bounds and other special constraints are treated as 

general A-typ« constraints. Analogs of the previous penalty re- 

sults as well as new penalty results emerge easily by allowing 

Bx > d to be non-vacuous. This will now be illustrated for the 

three examples. 

The requirement made throughout this subsection that 

Ax ^ b be replaced by Ax « b in  (p)  served purely as a 

means of simplifying notation and facilitating comparison with 

equivalent results in the previously published literature. 

This requirement is now dropped. 
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5.2 Penalties for Example 1 

Example 1 differs from the previous development only 

in that (CPRr) now has upper-bounded variables. Both 

VD(j) and ^(j) still equal v(CP) for all j € If by Bieorem 

2. Hie remedy for these vanishing penalties is again to 

invoke the representation for x. which is available from the 

final LP tableau of (CP). This representation will be 

written as 

(32) Xj - arjo - 2^ xj   for j € If 

where,  of course, many of the coefficients a** may be 0. 
Ihe resulting strengthened conditional lower bounds on 
v(CP|x. ^  fx.])  and vCCPfx^ i Cci] + 1)   for j c If are 

vJdJ   - vCCP^jXj - «jo-^OTji *i ^ Sj]) 

(33) # A "J _ 
VyCj)   - vCCPR^IXj - arjo " ^ «^ xi ^ ^1 + 1). 

* * 
We have used the notation VD and V« as in  (23)  because  (33) 
is an exact counterpart of  (23).    Like   (23),   (33)  is generally 
computationally onerous because each estimate requires solving 
a knapsack-type problem in integer variables.    The fact that 
the knapsack problem now has upper-bounded variables is but 
a small advantage.    Ihe most easily computed lower approxi- 
mation to  (33)  is obtained by dropping the integrality re- 
quirements as in   (24): 

v;o(j)  - v(ap^|xj - «jo - 2 or^ xi i C^D 
(34) 

v;o(j)   - v^PR^Xj - orjo - 2 a^ Xi ^ ffjl + D 
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The notation V.0 and V 0 has again been carried over. 

The  differences 

(35)       V*0(j) - v(CP) and V*0(j) - v(CP) 

are Driebeek-like up and down penalties for Example 1. 
The computation of  (34)  requires only slightly more effort 
than the computation of   (24).    A "continuous knapsack1* 
problem with upper-bounded variables must now be solved. 
Explicit formulae for V-0 and Vy0 are slightly more cumber- 
some than expression   (25), but are easily programmed for a 
digital computer. 

To strengthen  (34)  one may formally write the counter- 
part of  (26),  but unfortunately explicit calculation may be 
nearly as costly as  that of  (33)   itself.    This is because 
the upper bounds generally invalidate  the key property of 
(26)  that at most one variable need be at a positive level 
in an optimal solution of each associated optimization 
problem.    Thus  the strengthened penalties of Tomlin do not 
generalize usefully to Bx 2 d when it includes upper bounds 
on variables. 

But the other technique based on Theorem 3 for strength- 
ening VD

0(j)  and vu
0(j)  does generalize nicely.    Let iD(j) 

and irT(j)  be respectively the fractional-valued variables 
in the solutions of the optimizations corresponding to V_  (j) 
and Vy (j).    It is easy to see that at most one variable need 
be fractional in each of these solutionsi if none is,  then 
that penalty cannot be strengthened by the present device. 
The strengthened conditional bounds analagous to  (30) ares 
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.•2,.,    A 

(36) 

V(j)  - vCCPRjj-jXj - ajo - 2 aii xi ^ fj^ and xi  (j) Integer) 

vj2(j)  - vCCPR^Ixj - Q,JO - 2 «^ Xi ^  ^1+1 and x.^, integer). 

The required optimizations eure inexpensive to carry out on a 
digital computer.    Clearly, 

(37) 
v*0(j) ^ V*2(j) ^ V*(j) ^ vCCPJXj 2 fXj] + 1). 

Exactly the same types of penalties can be constructed for 

j c I-If when the objective function coefficient of x. vanishes 

in (CPftj-). 

5.3    Penalties for Example 2 
The development of penalties for Example 2 closely par- 

allels that for Example 1.    For j e I- both up and down pen- 
alties again vanish by Theorem 2, and it is necessary to use 
the final LP tableau representation of the form (32)T^ The 
resulting conditional bounds V.fj) and V(.(j)  defined in (33) 
may still be too computationally onerous to use in general, 
but the multiple choice constraints do tend to make the com- 
putation easier by comparison with Example 1.    One can imagine 
nontrivial situations where V]D(j)  and V  (j)  can be computed 
relatively economically by a simple enumerative procedure. 
But in general one may have to fall i>ack on the Oriebeek-like 
penalties defined by    (34) . The required computations are 
no longer simple continuous knapsack problems with upper- 
bounded variables,  but they can still be carried out efficiently 

^Numbered displays from the discussion of Example 1 Jill be 
used here with the understanding that (CP), etc., have ihe 
structure of Example 2 rather than Example 1. 
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by specialized techniques (e.g., by parametric optimization 

applied to the dual of (CPRr) with respect to the added con- 

straint) . Strengthening these penalties along the lines 

suggested by Tcmlin as in (26) appears to be no easier in general 

than (33) itself. But again, as with Example 1, the strength- 

ening (36) based on Theorem 3 is attractive. The Indices 

iD(j) ai.d i^j) may be selected to be any of the fractional- 

valued variables in the solutions of the optimizations cor- 

responding tu VD
0(j) and Vu

0(j). The implementation of (36) 

on a digital computer is only «lightly more expensive than 

that of (34). Naturally, (37) continues to hold. The reader 

should have no difficulty seeing what to do if penalties are 

desired for variables in l-I. for reasons explained in Section 3.5. 

The special nature of the multiple choice constraints 

(1) makes it possible to define "cumulative" conditional upper 

bounds as follows: 

(38) 

V*0(j;Jk) -Max {vj
0(j), V*0(i) for i £ {Jk-j}} 

V*2(j;j]c) -Max {Vü
2(j), V*2(i) for i € {jk-

j}} 

where it is understood that j is in J. in these definitions. 

That this provides true lower bounds on v(CP(x. « 1) follows 

from the fact that x. » 1 implies x. - 0 for all i^j in the 

same multiple choice set. 

5.4 Penalties for Example 3 

For Example 3 we must partition I. into two parts: 

If n {I,...,K} and If-^f n {l,...,Kp. For the first part, 

as described in detail in Section 3.4, the up and down pen- 

alties associated with VD(j) and V^j) are highly unlikely 

to vanish. In fact, they are likely to be quite large. Thus 

-T 
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it is unnecessary to invoke an alternative representation 

for such j from the final LP tableau. For j c If-ff n |I,..,K]) 

however, it is easy to see that the naive penalties vanish and' 

thus that the alternative representation may be useful. The 

detailed discussion would be so close to that for Example 2 

that it will not be given here. 

5.5 Peaalties and Lagrancrean cuts 

We have seen that the Lagrangean relaxation viewpoint is con- 

sistent with standard penalty results, and that various improvements 

thereon for special problem structures such as Examples 1-3 then 

follow easily. What to do with these penalties has not been 

discussed. For this the reader should refer to Sections 3.4 

and 3.5T the uses described there include all of the standard 

uses for penalties to be found in the published literature. 

An additional use for penalties is in connection with 

Lagrangean cuts, via the options described in Section 4.5. 

Recall for Examples 1 and 2 that all cuts of type (11) have 

zero depth at x no matter which cut variables are selected. 

Both the simple penalties based on (34) and the strengthened 

penalties based on (36) can be used to generate cuts with 

positive depth at x so long as at least one of these penalties 

is non-zero. This may be done as follows. In order to keep 

the notation below consistent with that of Section 4, it will 

be assumed without loss of generality that (CP) equals (P) 

when applying the results of Sections 5.2-5.4. 

Consider first the simple conditional bounds (34)• 

Select any j t If such that at least one of the penalties 

(35) is strictly positive, and take this j to be the one 

cut variable. Clearly, 

(39)  v^lxj - «jo - 2 a^  x.) ^ v(P|xj) 

holds for all fixed x., and in particular for all values of 
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x. which are part of a feasible solution to (P). The left- 

hand side of (39) is convex as a function of x^, and thus 

the unique linear function passing through it at the points 

(x.") and fx-l + 1 must underestimate it for all integer values 

of x.: 

(40)  V*0(j) + (V*0(j) -V*0(j)) (Xj - Cxjl) ^ 

v(PRr^x^ « «4« - 2 erm x.) for sll integer    x.   . 
K '    J JO      ^j   J*      * J 

Together   (39)  and  (40)   imply that 

(41) V*0(j)  +  (V*0(j)   - V*0(j))   (xj -  Ifcj]) ^ ex 

is a legitimate cut. Ulis cut can be thought of as a rela- 

tive of (11) which takes advantage of the two remarks in the 

closing paragraph of Section 4.5. Notice that if there are 

several j € lf for which V- (j) and V^ (j) are computed, then 

it is an easy matter to select j so as to yield the cut of 

type (41) which is deepest at x. 

Now consider the strengthened.  >nditional bounds (36). 

An analog of inequality (39) holds, but the analog of (40) 

does not because of the added integrality requirement in (36). 

It appears necessary to require that j c I- be a 0-1 variable 

if a em« is to be based on (36) with j as the single cut 

variable. Then 

(42)  V*2(j) + (V*2(j) - V*2(j)) xj i ex 

is a legitimate cut related to the original cut  (11)  by the 
last aemark of Section 4.5.    By (37),   (42)  is clearly a 
superior cut to  (41) .It is a simple matter to select    j    so as 
to yield the cut which is deepest at   x among those of the form 

-.-- ii «    / 
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For Example 2 one should of course use in (41) and (42) 

the cumulative penalties defined in (38) in place of Vu
0(j) 

*2 
or V» (j) if the necessary quantities are at hand. One may 

further improve cuts (41) and (42) when j is a multiple 

choice variable by using one of the obvious cuts 

(43) 2 V*T
0(j;Jk) x. ^ ex,   k-l,...fK 

jeJk 
ü       3 

or the still stronger cuts 

(44) 2 V*2^;.!,) x. ^ ex,  k-l,...K. 
J€Jk 

ü       J 

Each of these cuts takes all of J. as the set of cut variables, 

and is related to (11) by the last remark of Section 4.5. It 

is easy to /erify that cuts of the form (43) [resp. (44) ] are 

at least as strong as those of the form (41) [resp. (42)] for 

all x feasible in (p). 

A cut very much in the spirit of (43)and (44) was pro- 

posed by Healy [15].  To be precise, for the k  cut he used 

V.T
0(j) as the coefficient of x., where Vu

0(j) is computed 

with Bx ^ d taken to consist of only the k  multiple choice 

constraint (no upper bounds or other multiple choice constraints 

are included). This cut is legitimate for the same reason 

that (43) is, and is dominated by (43) because the coefficients 

of (43) are at least as large. 

We note in closing that penalty-based cuts with more 

than one cut variable can often be obtained for Examples 1 

and 2 and other structures by:  (i) adding to (PRr) relations 

of the form (32) for any subset of j's in I. so long as no vari- 

able appears with a nonzero coefficient in more than one of 

\ 
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these relations, and then (ii) exploiting separability. 

See the initial discussion of Section 4.5 for a development 

in much this same spirit. Details are left to the reader. 

 -v 
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6.  RELATIONS TO SURROGATE CONSTRAINTS 

The surrogate constraint is a device which was originally 

developed in the context of pure 0-1 integer programs. There 

is nothing inherent in the nature of this device which limits 

its use to this context, as will become amply clear, but it 

will be more convenient to conduct our brief review of surrogate 

constraint ideas assuming    until further notice that  (P) 

is a purely 0-1 program with Bx > d consisting solely of 

the unit upper bounds. 

Glover [12 ] proposed that surrogate constraints of the form 

X(b-Ax)<0 with fixed X > 0 be added to a 0-1 integer pro- 

gram in conjunction with its solution by an enumerative algorithm. 

Any X > 0 leads to a surrogate constraint which is legiti- 

mate in the sense that it must be satisfied by all x feasible 

in (P) , for it is merely a nonnegative linear combination of 

the given constraints.  Such constraints were conceived pri- 

marily for use with enumerative algorithms that do not use an 

LP subroutine, for such algorithms have very limited ability 

to consider the conjoint implications of several constraints. 

Glover's criterion for the choice of X was that it should 

maximize 

Minimum ex subject to X (b-Ax) < 0 

30-0,1 

over all X ^ 0 . unfortunately, this criterion is prohibitively 

expensive to implement in general. By dropping the integrality 

requirements while keeping 0 < x < 1 , however. Bales [ 1 ] 

showed that the modified criterion permitted a characterization 

of the optimal X as the dual solution T corresponding to 

the constraints Ax > b in the ordinary linear program  (P) . 

This leads to a surrogate constraint that is identical to(13)withX»r, 

which we remarked earlier is Identical to Bales' "filter" 

constraint. 
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l» 

The present author took a different route in [ 8 ] by adding 

the constraint ex < z to X(b-Ax) < 0 [recall from Sec. 3.1 

that z  is the objective function value associated with the 

best known feasible solution to (P)] and rationalizing the 

following slightly different criterion for the choice of \   : 

maximize 

Minimum \(b-Ax)4(cx-z ) 

x-0,1 

This criterion also leads to T   as the optimal 

The resulting surrogate constraint advocated in 

over \ £ 0 
choice for 

[8]  is 

(45) cx+r(b-Ax) < z  . 

Two uses of   (45)  were proposed:    as a possible means of fathoming 
via the easy test 

r l      7    * (46) I  Minimum    cx+r(h-Ax)        ^ z 
L        x=0,l J 

and as a possible means of range restriction via the following 

easy tests applied to the jth variable: 

(47a) r Minimum cx+K (b-Ax) J > z 
X"sO,l s.t. x.«0 

(47b) j Minimum cx+X (b-Ax)   > « 
u   XP0,1 s.t. x.»lJ 

If (46) holds then (P) is fathomed.  If (47a) fresp. (47b)] 

holds then x. must be 1 [resp. 0] in any feasible solution of 

(P) which is superior in value to the current incumbent. It is 

important to add that not only would these tests be performed 
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as soon as (45) is created, but also subsequently for candidate 

problems derived from (P) by separation — in which case the 

accumulated separation constraints would be appended to the 

optimizations in (46) and (47) . Note that this does not spoil 

the essential triviality of (46) and (47) from a computational 

standpoint. 

It is easy to interpret (46) and (47) from the viewpoint 

of Lagrangean relaxation with Bx ^ d consisting of the upper 

bound constraints x. < 1 . Test (46) can be rewritten as 

? * 
(48) v(PRr) ^ z  , 

which is precisely the elementary fathoming criterion associated 

with  (PRr) •  Similarly, (47) can be rewritten as 

? # 
(49a) v(PR^|x.=0) ^ z 

7 
(49b) v(PRr|xj=l) 2 z* • 

This is precisely the range restriction criterion described in 

Sec. 3.5. When (46) and (47) are performed on subsequent candi- 

date problems derived from (P) by separation, (48) and (49) are 

still standard Lagrangean relaxation tests except that an "old" 

X is used in  (CPR. ). This is the standard "pre-LP" strategy 

mentioned in Sec. 3.7. 

Thus the surrogate constraint (45) and the tests based on 

it are seen to be completely subsumed by the simplest Lagrangean 

relaxation techniques. Generalizations of (45) »• (47) when 

(P)  is not a pure 0-1 program or when Bx > d includes more 

than simple upper bounds can be obtained without difficulty. 

Some such generalizations were developed a few years ago by this 

writer in unpublished lecture notes and by Glover [13] using the 
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surrogate constraint viewpoint, but in every case the same 

results are easy special cases of more general and powerful 

results based on Lagrangean relaxation. It therefore appears 

that the Surrogate constraint viewpoint can be discarded in 

favor of the Lagrangean relaxation viewpoint. 
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7.  CONCLUSION 

We hope that the length of this development has not 

obscured the basic  ideas that we have tried to convey. 

Pore.nost anong these is the usefulness of Lagrangean relax- 

ation as a unified viewpoint from which one may develop 

auxiliary devices to improve the performance of existing 

branch-and-bound algorithne for integer programming (Sec. 3), 

develop new cutting-planes (Sec. 4), develop new penalties 

(Sec. 5), and supplant the narrower notions of surrogate 

constraints (Sec. 6) and relaxation by simply discarding 

troublesome constraints. All of these things usually can 

be done in a way that exploits the special structure of the 

particular problem class at hand. The trick is to judiciously 

choose the subset of constraints to play the role of Bx ^ d 

in our statement of the general problem (P). The three examples 

of Sec. 1.1 were carried throughout the paper to indicate how 

flexible the application of Lagrangean relaxation can be, and 

how dependent the results are on the particular choice of 

Bx ^ d.  The Integrality Property first encountered in Theorem 

1 appears to yield a useful dichotomy of the universe of pos- 

sible choices for Bx ^ d; choices satisfying this property 

seem to have less inherent potential than choices not satis- 

fying it, and often require extra measures to achieve attrac- 

tiveness (this is the main subject of Sec. 5). 

There is much work yet to be done to develop the full poten- 

tial usefulness of Lagrangean relaxation for various special 

problem classes. Several basic strategies require further ex- 

ploration, as discussed in Sec. 3.7. The recent work in this 

vein cited earlier [5] [6] [7] [16] [17] is an auspicious be- 

ginning, but is still just a beginning. 
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To this list can be added the current work of the author [10] on 

warehouse location problems with lower as well as upper capacities 

on warehouse throughput, and with arbitrary additional constraints. 

Such problems require but a slight generalization of Example 3 in 

this paper. The algorithm of [8] (see also Sec. 3.1.5 of [11]) has 

been modified to use both cuts and penalties based on Lagrangean 

relaxation. Preliminary computational experience vith several 

practical problems suggests that the first Lagrangean cut is much 

more effective than Gomoxy's 1960 mixed-integer cut; and that the 

Lagrangean penalties are typically at least an order of magnitude 

higher than Tomlin's strengthened penalties, yet less expensive 

to compute. The net result is that overall computing times are 

greatly reduced. We feel that this experience alone justifies 

further serious investigation for other significant classes of 

problems. 
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